
Automated network configuration

Big networks can be correct

Michael Shields, Google Engineering

RIPE 57, October 2008

How to get there

Policy generation for the network

Audit for correctness and policy adherence

Ensure completeness of your architectural standards

Modeling

How to make a small network a bit bigger

Buy equipment

Provision power and space

Rack and stack

Interconnect

Configure the device based on your documentation

Have another engineer check your work

Profit!

We’ve done it a
thousand times. �
What could go

wrong?

interface ethernet [x/y]
 ip address [address] [netmask]
 vrrp 1 priority [120, 100]
 vrrp 1 authentication cisco
 vrrp 1 timers advertise 3
 vrrp 1 timers learn
 vrrp 1 ip [address]
 no shutdown

interface ethernet 1/0
 ip address 10.1.0.2 255.255.255.0
 vrrp 1 priority 120
 vrrp 1 authentication cisco
 vrrp 1 timers advertise 3
 vrrp 1 timers learn
 vrrp 1 ip 10.1.0.10
 no shutdown

interface ethernet 1/0
 ip address 10.1.0.2 255.255.255.0
 vrrp 1 priority 120
 vrrp 1 authentication cisco
 vrrp 1 timers advertise 3
 vrrp 1 timers learn
 vrrp 1 ip 10.1.0.10
 no shutdown

interface ethernet 1/0
 ip address 10.1.0.2 255.255.255.0
 vrrp 1 priority 100
 vrrp 1 authentication cisco
 vrrp 1 timers advertise 3
 vrrp 1 timers learn
 vrrp 1 ip 10.1.0.10
 no shutdown

interface ethernet 1/0
 ip address 10.1.0.2 255.255.255.0
 vrrp 1 priority 120
 vrrp 1 authentication cisco
 vrrp 1 timers advertise 3
 vrrp 1 timers learn
 vrrp 1 ip 10.1.0.10
 no shutdown

interface ethernet 1/0
 ip address 10.1.0.2 255.255.255.0
 vrrp 1 priority 100
 vrrp 1 authentication cisco
 vrrp 1 timers advertise 3
 vrrp 1 timers learn
 vrrp 1 ip 10.1.0.10
 no shutdown

Why people make mistakes

People will cut and paste. Errors propagate.

Humans expect to see patterns."
Our brains see things that aren’t there.

Errors happen, and you won’t find all of them just by looking.

Things do go wrong

Most common types of errors:

• Missing or incorrect security ACLs

•  Incomplete BGP meshes (mysterious blackholing)

•  Incomplete MPLS mesh

•  Incomplete or incorrect QoS configuration

•  IP address confusion

Typical response: Add more procedures

• End up with a mass of procedures and policies that look the same

• Can’t ever keep the corpus of documentation self-consistent

• Can’t ever keep the network consistent with documentation

• You’ll go blind trying. Need to create abstractions so we can think big.

You have to automate if you want it big

The more actions you take, the more mistakes you’ll make.

If it's not automated, it will not scale. "
 [Corollary: if your network can be managed by hand, it is small.]

Correct networks scale better. This is a competitive advantage.

Everyone wants an orderly network

But you already have a network. It’s up and running."
You’re good at your job, so your network is pretty good.

It’s good enough. But how do you get to better?

What should you do instead?"
…and how do you get there?

Databases can drive configs

Configurations are templates with variable substitution

Enforce policy by tools, not only by documentation

Forces you to find your exceptions

Don’t touch the
router until it’s in

the database

Subnet
 Interface
 Customer

10.1.0.2/24
 ethernet 0/1
 6829 — E. Blofeld, Inc.

10.1.0.3/24
 ethernet 0/2
 3189 — Disco Volante

10.1.0.4/23
 ethernet 0/3
 17942 — Thanet Alloy

What’s up in the
attic?

Why are things wrong?

(in order of how easy to fix)"

1. Bugs in code for initial population of database

2. Actual configuration errors

3. Deliberately unusual configuration

Need audits, not just configlets

It’s not enough to generate your configs once.

You should be able to recheck the actual network state against the
generated network state at any time.

protocols {
 ...
 ospf {
 ...
 area 0.0.0.0 {
 {% for interface in dev.physicalinterface_set.all %}
 {% for unit in interface.logicalinterface_set.all %}
 {% if unit.ospf_metric %}
 interface {{ unit.name }} {
 metric {{ unit.ospf_metric }};
 }
 {% endif %}
 {% endfor %}
 {% endfor %}
 }
 ...
 }
 ...

Actual Google audit

Router
 Type
 Loopback

router1.iad01
 Cisco AGS+
 192.0.2.38

router2.iad01
 Cisco AGS+
 192.0.2.39

router1.lhr07
 Cisco 4500M
 192.0.2.207

IS-IS NET

49.0001.0000.00
00.000a.00

49.0001.0000.00
00.000b.00

49.0001.0000.00
00.000c.00

Transformation

F(data) → old configuration

F′(data) → new configuration

You can work at the level of the forest, not the trees.

Ad hoc

isolation jail

Allow for one-offs
with jails

What tools do you need?

1. Configuration collector — RANCID is a good start

2. Database

3. Configlet generator

4. Comparison engine

What tools do you need?

configs
(as-built)

configs

(generated)
≟

Summary

Center all routine operations around an audit."

Fix one class of problems at a time, networkwide."
IBGP mesh is a good place to start.

Continuously compare your generated configs"
against actual configs, and get diffs to zero.

Make jails to isolate nonstandardness.

Summary

Small networks don’t need this."
Big ones do."
The transition is the hard part.

You can only get there incrementally.

“Out of the crooked timber of humanity, "
“no straight thing was ever made.” —Kant

Questions?

Michael Shields

mshields@google.com

P.S. We’re still hiring.

