IX:es and the Internet in Europe...

kurtis@netnod.se

This might seem like a statement but it is as much a question...

Why interconnect at all?

- Presentation grew out of talking to some old time people from the early days of Internet in Europe and trying to collect observations...
- Interconnects are
 - Transit links, paid connectivity
 - Private peering with other networks based on unilateral agreements
 - Public peering over shared infrastructure

Basically divided into three phases

- I. Early and mostly academic days, 1993-1995
- 2. Early commercial days, mid to late 1990's
- 3. Modern times

Early and academic days

- No competition
- People 'wired up' where possible
- Great co-operation among all parties
- Traffic mostly UUCP email and news

Early and academic days

 One of the first larger interconnects was the IBR-LAN at CWI in Amsterdam

Early commercial days

- Educational network funding shifts to universities
- Players are starting to form peering policies
- The basic rule of "both networks that peer must benefit" is emerging
- The first commercial service offerings are starting to use peering as service differentiation

First de-peering threat?

* * * * A bi-monthly electronic news bulletin reporting on the activities of DANTE, the company that provides international network services for the European research community.

THE WORKS OF D A N T E

No.8, March 1995

Editor: Josefien Bersee

NEW EBONE-EUROPANET GATEWAY

Since 1 February the fourth consecutive interconnect arrangement between EuropaNET and Ebone has been in operation. As the capacity of the previous gateway was insufficient, the new gateway has a capacity of 1 Mbps, and will shortly be upgraded to 1.5 Mbps. The cost is shared between Ebone and some of DANTE's customers. The current arrangement will cover the first 9 months of 1995.

At the same time DANTE regrets not to have been able so far to persuade EUnet to serialize their connection to EuropaNET. DANTE has been providing EUnet with a free 64 kbps access, but in practice much more capacity is used. Therefore DANTE asked EUnet to increase their connection rate accordingly and to serialize the connection in October last year. Unfortunately, DANTE can not indefinitely offer free and unlimited connectivity to some networks while charging others.

- Emerged as a way to save on costs
 - For transport capacity (that was kept 'artificially' high by ex/PTTs and half-circuit pricing)
 - For transit / transatlantic costs
- International circuits where low bandwidth so delay was less of an issue in the early days

- In the early European Internet, most traffic was destined for the US as most content was US based
- Over (modern) time, more content was developed in Europe
 - Mainly to meet localized interest, culture and language
- Local content changed the traffic flows, and most likely changed the interconnect landscape

- As can be seen on the previous slide traffic shifted to be localized to language regions around 2001
- Keeping traffic local helped with "customer experience", and became (at least partly) a goal in itself
- Hot potato routing helped and meant that transport costs where shifted to the peer as quick as possible

- While hard to prove, the dense interconnects in Europe helped innovate services and content
- At a time when transit prices and transport prices where high, peering provided a way to lower end-user costs and stay competitive against mostly foreign (US based) providers

So what do I gain from peering?

- Keeping regional/national traffic regional and local is always good
 - Cheaper, Better performance will help to develop local content
- Redundancy
 - You are no longer dependent on a single provider as upstream and their current operational status
- Control allows you greater control of traffic flows

But where do I peer?

- Can be done via private or public peering
- Public peering and the establishment of Internet Exchange Points (IXPs) followed in the deregulation of Europe (as consequence of more operators - not of deregulation)
- Establishing neutral ground where traffic can be exchanged with multiple parties to the price of one connection will benefit the exchange of traffic

Other benefits with IXPs

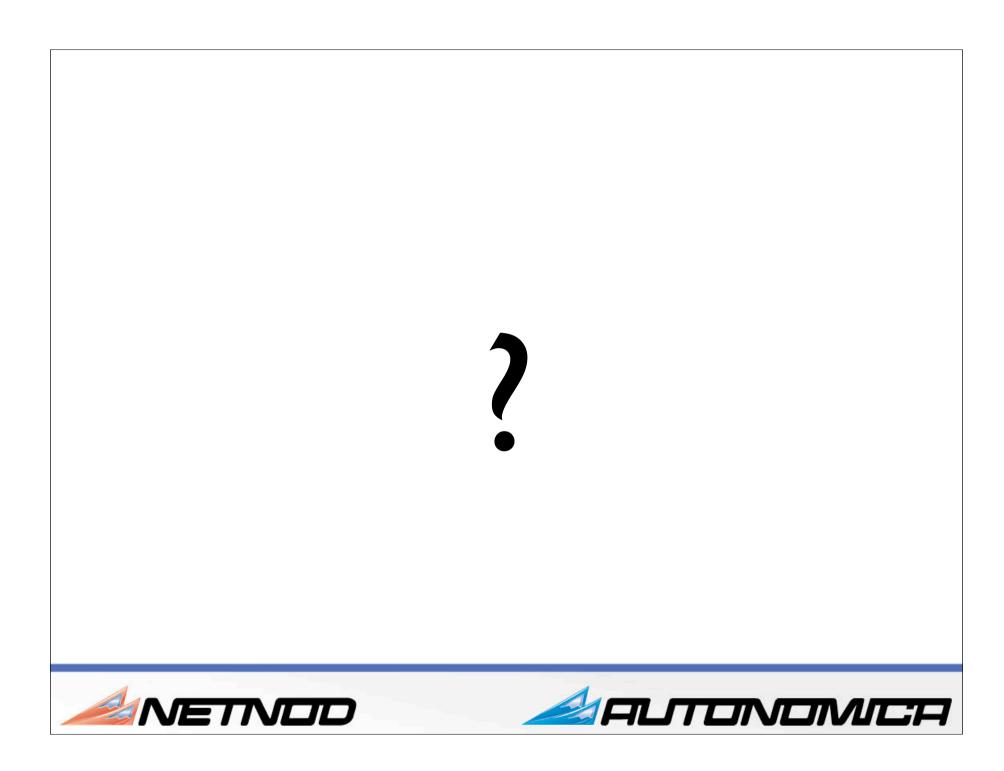
- Often IXPs or the local operator community have decided to co-locate common services at IXPs
- These services are normally of general benefit to the Internet community
 - NTP-service, ccTLD-servers, IRR copies, etc
- Peering with and providing (often free) transit to the IXP infrastructure will help your customers

But how much difference does it make?

- A small asian provider with a satellite uplink connecting to Linx in London picked up 11k routes from the route-servers and 40k routes in total
 - With only little traffic to offer and little effort
- Peering abroad doesn't always make sense, but be sure to make the numbers
- But peering nationally almost always makes sense

But I am the dominant transit provider!

- Are there cases where peering won't be beneficial?
- Well, if you are the dominant telco (PTT) you can only loose customer base over time
 - The immediate standard action is to try and monopolize the transit connections, but that will only work that far
 - The moment there is an alternative transit path (terrestrial or satellite) everyone will loose out



Regulation!

- Governments tend to like to regulate (keeps them busy and justify their jobs :-))
- But in the case of peering, i.e for-free exchange of traffic - there really isn't anything to regulate
 - When it comes to resilience and robustness there isn't really anything to regulate either, as peering is a complement to transit (And from on a national security POV the converse is also true) - and here customer demand will regulate better than any government

